
2023 Robot Code

An in Depth Explanation

Team Steam 5119

Zachary Hansen Terry

Contents

1 Introduction 2

2 Drivebase 2
2.1 Physical Explanation . 2
2.2 Drive Subsystem . 3
2.3 PID Control . 4

3 Arm and Intake 6
3.1 Physical Explanation . 6
3.2 Arm Positions . 6
3.3 PID Control . 6
3.4 Intake . 7

4 Triggers and Xbox Controllers 7
4.1 The Trigger Class . 7
4.2 Xbox Controllers . 7
4.3 Robot Container . 8

5 Command Based Programming 9
5.1 Commands . 9
5.2 Subsystems . 11

6 Autonomous 12
6.1 Intro . 12

1

Figure 1: Game Diagram

1 Introduction

The First Robotics Competition game in 2023 was ”Charged Up”, a pick and
place style game in which robots would attempt to move game pieces which
consisted of cones (small yellow cones) and cubes (purple cube-like inflatables)
to grids (multi-leveled assemblies with poles for cones to be placed on and shelves
for cubes) for points. Placing a game piece on a higher level of the grid gains
more points. The robot recives cones and cubes by:

1. Being pre-loaded in the robot at the start of the game (1 max)

2. Arranged on the floor of the game by alliance members (4 max)

3. Retrieved from human player station substation

The last 30 seconds of the game is the endgame in which robots should dock on
the charge station, a balancing challenge with a platform that rocks forwards
and back. It lights up when the charge station is level.

The 2023 robot, ANDY (Figure 2) was composed of 3 main mechanisms
which would provide the complexity to our code:

1. Drivebase

2. Arm with motor at top for angle and motor for length control

3. Intake made up of rubber wheels which turn to ”suck” the cone or cube
in and hold it until it is released

2 Drivebase

2.1 Physical Explanation

The drivebase is made up of 3 wheels on each side of the chassis, the center
one being dropped down by a couple millimeters relative to the outer two.
They are driven over a belt that is turned by a single output shaft coming

2

Figure 2: 2023 Robot, ANDY

out of a 10.75:1 gearbox which has an input of two CTRE Falcon 500 motors.
Falcon 500s are brushless motors which feature integrated motor controllers and
encoders. Turning is achieved by differing the speed at which the two banks of
motors spin.

2.2 Drive Subsystem

The drive subsystem was the largest subsystem we made in 2023 with over 190
lines of code. This guide will not go over all of the methods in the file because
many are simple things such as getters or setters which are just methods that
manipulate private variables. We will start with going over all objects that are
created by the drive subsystem. First, driving related objects such as motor
controllers and the differential drive are created:

// Physical motor controllers of the robot (4 Falcon 500s)

private WPI_TalonFX leftback = new WPI_TalonFX(MotorIDConstants.leftBackDrive);

private WPI_TalonFX leftfront = new WPI_TalonFX(MotorIDConstants.leftFrontDrive);

private WPI_TalonFX rightback = new WPI_TalonFX(MotorIDConstants.rightBackDrive);

private WPI_TalonFX rightfront = new WPI_TalonFX(MotorIDConstants.rightFrontDrive);

// Each side of the robot has a MotorController Group

private MotorControllerGroup left = new MotorControllerGroup(leftback, leftfront);

private MotorControllerGroup right = new MotorControllerGroup(rightback, rightfront);

// The DifferentialDrive contains the main methods of moving the robot

private DifferentialDrive diffDrive = new DifferentialDrive(left, right);

The next objects that are created are the NavX gyro meter and the SlewRate-
Limiter. A rate limiter is a way to slow down the acceleration of the robot. We

3

used a rate limiter for our velocity because without it the robot was too sensitive
and jerked forwards in response to input SlewRateLimiter takes in a value in
it’s constructor which is the units per second that a value should change by. The
input for our speed is from zero to one so the the rate limiter should limit the
robot to taking half a second before it achieves full output. Those are defined
like this:

private AHRS navX = new AHRS(SPI.Port.kMXP);

private SlewRateLimiter rateLimitVelocity = new SlewRateLimiter(2);

To control the robot in the teleoperated period we used an Xbox One con-
troller which was configured to change speed with the left joystick and rotation
with the right. This is passed to a curveatureDrive() method which runs both
sides of motors at different speeds to achieve turning. There is a variable called
halfSpeed which when true will set the speed output of the robot to 1

2 of the
input. The drive code is as follows:

public void curveDrive(double speed, double roatation) {

if(halfSpeed == false) {

diffDrive.curvatureDrive(rateLimitVelocity.calculate(speed), -roatation, true);

} else {

diffDrive.curvatureDrive(speed / 2, -roatation / 2, true);

}

}

It is valuable to know how far the robot has moved. This can be used for
autonomous purposes, as an input to PID controllers, and for the calculation of
velocity. Encoder data is returned to us in units of ticks. We can convert ticks
to rotations by dividing by 4096. This is then multiplied by the circumference
of the robots wheels to find the distance that it has traveled.

ticks

1
∗ 1

4096 ticks
∗ circumference

1

2.3 PID Control

This guide assumes that the reader already understands how a PID controller
works and what it is meant to achieve. In our 2023 robot code the team used
PID Commands in order be best integrated into the command based nature of
the 2023 code base. The point of using the PID Command class that is built into
WPILib instead of a homemade solution is that it can be considered a command
for all purposes a command would be used for which is especially useful for
autonomous commands which are often many commands run sequentially.

One example of a way that PID Control was used in 2023 is the GyroTurn
command. It is meant to turn the robot a certain amount of degrees using the
NavX gyro as a means of finding error. Listing 1 shows the source code for the
GyroTurn class. It is obviously inherited from the PIDCommand class and so
it calls the super() method with the following parameters:

4

public class GyroTurn extends PIDCommand {

public GyroTurn(double turnAngleDegrees, DriveSubsystem drive) {

super(

new PIDController(

GyroTurnConstants.kP,

GyroTurnConstants.kI,

GyroTurnConstants.kD),

() -> drive.gyroAngleDegrees(),

turnAngleDegrees,

output -> {

drive.drive(0, output);

});

addRequirements(drive);

getController().setTolerance(GyroTurnConstants.tolerance);

}

@Override

public boolean isFinished() {

return getController().atSetpoint();

}

}

Listing 1: GyroTurn.java

1. A PID controller to use which is itself initialized with P, I , and D con-
stants.

2. A lambda expression that will return the current measurement of the Gyro

3. The setpoint which is a double and passed through the constructor

4. An inline lambda expression that describes how to use the output. In this
case it will go directly to the drive() function we made in DriveSub-
system.java

We also set the tolerance in the constructor. Tolerance is a value that is
added and subtracted to the setpoint and exists because a Gyro cannot be
100% precise. If we didn’t have a tolerance, it is very unlikely that the PID
command would ever end because the isFinished()method would never return
true. A command that doesn’t end is almost always a bad thing because a
command is always using physical resources such as motors or pneumatics and
those resources cannot be used by other commands until the command currently
using them ends.

PID control is used in many parts of the robot code and turning is just one
example. Other cases where PID control was used in the 2023 code are: driving
straight, driving a distance, raising the arm, extending the arm, and balancing

5

Position Extension Angle Intake Pos.
Reset 0 0.537 Retract
Low 0.31 0.8 Deploy

Medium 0.172 1.52 Retract
High 0.45 1.65 Deploy

Human Player 0.45 1.65 Retract

Figure 3: Arm Positions

on the charge station. All PID control in 2023 was implemented using the
PIDCommand class for simplicity.

3 Arm and Intake

3.1 Physical Explanation

The arm of the robot has 2 axis of movement: forwards and backwards (exten-
sion) and up and down (angling). The extension axis is managed using a single
REV Robotics Spark Max brushless motor. The motor is attached to a series
of belts with a gear that moves a belt that moves the arm in and out. Mea-
surements are taken using the integrated encoder in the Spark Max brushless
motor which is relative, not absolute. The angling of the arm is achieved using
two REV Robotics Spark Max Brushless motors which are connected together
through two 1:100 gearboxes which drive a gear on a chain connected to the
axle that the arm angles on.

The intake is what picks up and holds game pieces for scoring. It has rubber
wheels that pull a cone or cube into it and the wheels are reversed to eject the
game piece. Because of the geometry/design of the intake, to pick up a cube the
wheels must be ran in the opposite direction to when picking up a cone. The
rubber wheels are driven over a belt connected to a REV Robotics Spark Max
brushless motor. The intake is also able to be angled forwards and backwards
through the use of two pneumatic pistons.

3.2 Arm Positions

A major theory that we based much of the robot code on was that there are
only 5 different positions that the robot arm should be in: rest low, medium,
high, human player station height. Each position has 3 different characteristics:
arm extension, arm angle, and intake position as shown in Figure 3.

3.3 PID Control

Controlling the arm is a precise process because the position of the arm must
be consistently correct for any scoring to take place. The extension of the arm
was trivial because it has no forces acting against it. The angle was much

6

more difficult. The force of gravity is acting against keeping the arm up so
a constant torque must be applied through the motors to keep it in position.
This is solved by running the PID command for the arm constantly so that
the setpoint always exists and it is dynamically kept in position. Another issue
that gravity adds is that when going from a higher position to a lower position,
gravity and the PID controller are working in the same direction providing too
much torque which can cause the intake to slam into the ground with enough
force to shatter the sidings1. To solve this, we made a separate PIDCommand
class ArmAngleLowPID.java which has the same P, I, and D constants but
divides the calculated output by 3.

3.4 Intake

The intake has two components: a motor for intaking and two pistons for de-
ploying and retracting the intake. The pistons are controlled through a single
solenoid connected to a compressed air tank. Both components are easy to con-
trol, the solenoid is just a matter of turning on and off at different positions
and the intake should just be run at positive or negative speeds depending on
whether a cube or a cone is being picked up. With cubes, it is important to run
the intake at a lower magnitude as they are inflatable and will pop if they are
pinched to hard.

4 Triggers and Xbox Controllers

4.1 The Trigger Class

A paradigm that was new to 2023 robot code was the usage of ”triggers” in
code. A trigger is what runs commands based on the state of the trigger. A
trigger is often bound to a physical button for example on an Xbox controller,
however it can also be bound to a condition in code through a lambda expression
or function reference.

// Binding a trigger to a button "b" on controller "xbox"

private final Trigger button = xbox.b();

// Binding a trigger to a conditional function

private final Trigger condition = new Trigger(m_exampleSubsystem::isTrue);

4.2 Xbox Controllers

In 2023 we had two Xbox controllers to control the robot. One was for the
driver and controlled just the robots location. The other controller was the

1This was when the sides of the intake were made of acrylic which was extremely fragile.
They are now made of poly carbonate which is much more resistant. In fact, we have sheared
the threaded metal rods going through the intake and not the poly carbonate.

7

Figure 4: Operator Controller Button Bindings

operator and meant to control the other systems of the robot: arm, intake, ex-
tension, scoring. The operations are separated because we determined it would
be too complex for our driver to control both driving the robot and operating the
arm/scoring. In code we can define an Xbox controller as CommandXboxController
which provides functions that return all the buttons as triggers.

4.3 Robot Container

The robot container is a file that contains all of the triggers, autonomous com-
mands, subsystems, and default commands for the drive subsystem.
RobotContainer.java is on the highest level of the code directory. These are
the parts that make it up:

1. Subsystem Declarations. This is where all subsystems that have been
written are created. It is important that we consider these to be the
”only” subsystems because a subsystem uses physical resources such as
motors, solenoids, encoders, etc.. All use private access modifiers and
they are passed into commands when they must be used.

2. Commands and Xbox Controllers. Declaring Xbox controllers (driver and
operator) and triggers which are bound to buttons on the Xbox controllers.

3. Default Commands. Set inside of the constructor. A default command will
always be running unless another command that requires the subsystem

8

is called. The drive default command is constantly reading the position of
the Xbox controller joysticks and inputting them into the drive command.

4. Configure Bindings. Telling the library what commands to run when a
trigger’s specified state is true. Commands are started when they are
created as objects in code using new.

5. Get Autonomous Command. Returns a command to run as soon as the
autonomous period begins.

5 Command Based Programming

5.1 Commands

Commands are physical actions that the robot makes. All commands are in-
herited from the CommandBase class and contain initialize(), execute(),
end(), and isFinished() methods to override. Initialize runs as soon as the
command is scheduled and only once. Execute runs every 20 milliseconds for
the duration of the command. End is called right before the command ends
and isFinished() is called every 20 milliseconds for the duration of the com-
mand until it returns true in which case the end function is called and then the
command is ended.

A classic example of a command is the Drive command as shown in Listing
2. It takes in double suppliers2 for speed and rotation and a drive subsystem
(the one from RobotContainer.java). Another important part of a command
is the addRequirements() method. It defines which subsystems a command
uses and doesn’t allow other commands to be using the same subsystem at the
same time.

Often, it is useful to combine multiple commands together, for example in an
autonomous command. We can sequentially run multiple different commands
in an order to achieve our task. Another instance of combining commands in
our 2023 robot code is the arm position commands. The arm should first angle
up, then extend and retract the intake. This type of combining commands is
called a command group and can be done using the following classes:

1. Sequential Command Group. Runs every command in it’s contents in a
sequence, one after the other. Not used very often because we don’t let
our PID commands ever return true in isFinished() so the sequence would
never move onto the next command.

2. Parallel Command Group. Runs every command in it at once. It is
important that commands in a parallel command group do not require
the same subsystems because they will both attempt to access them at
once and crash the code.

2A double supplier is like a lambda for numbers. It tells the code where to find a value
instead of the value itself because the speed that we want the robot to drive and it’s rotation
constantly change.

9

public class Drive extends CommandBase {

DriveSubsystem m_driveSubsystem;

DoubleSupplier driveSpeed;

DoubleSupplier rotationSpeed;

public Drive(DriveSubsystem driveSubsystem, DoubleSupplier driveSpeed, DoubleSupplier rotationSpeed) {

m_driveSubsystem = driveSubsystem;

this.driveSpeed = driveSpeed;

this.rotationSpeed = rotationSpeed;

addRequirements(driveSubsystem);

}

@Override

public void initialize() {}

@Override

public void execute() {

m_driveSubsystem.drive(driveSpeed.getAsDouble(), rotationSpeed.getAsDouble());

}

@Override

public void end(boolean interrupted) {

m_driveSubsystem.stop();

}

@Override

public boolean isFinished() {

return false;

}

}

Listing 2: Drive.java

10

public class Auto11 extends SequentialCommandGroup {

public Auto11(DriveSubsystem drive, ArmExtensionSubsystem armExtention, ArmSubsystem armRotation, PneumaticsSubsystem pneumatics, IntakeSubsystem intake) {

addCommands(

new ReverseIntake(intake).raceWith(new WaitCommand(1)),

new ParallelCommandGroup(

new HighArmPosition(armExtention, pneumatics, armRotation),

new SequentialCommandGroup(

new WaitCommand(1),

new Intake(intake).raceWith(new WaitCommand(1))

)

).raceWith(new WaitCommand(4)),

new Drive(drive, () -> 0.3, () -> 0).raceWith(new WaitCommand(7))

);

}

}

Listing 3: Auto11.java

3. Parallel Race Group. Runs every command at once and when one of
the commands finish it ends every command in the group. Used very
commonly with WaitCommand(t) to cause a command to only run for a
certain amount of time.

An example of an autonomous command that uses these command groups
is Auto11.java shown in Listing 3. In sequence it reverses the intake to hold
a cube in, moves the arm to the high position, runs the intake to score the
cube, and then returns to the reset position and drives backwards to leave the
community and get the mobility points. One thing to note: a few commands
are using something that looks like raceWith(new WaitCommand(t)). This is
the same as new ParallelRaceGroup(new Command(), new WaitCommand(t)

just more concise.

5.2 Subsystems

It often makes sense to group certain parts of the robot together in code. For
example, all the drive motors and their encoders and the gyro meter are all
concerned with the the location of the robot. Encapsulating these objects in
one class, a subsystem is a way that we can create methods that use all of these
components and keep our code organized. All objects and variables defined in
a subsystem should be private and manipulated through getters and setters. A
subsystem should contain the logic of a robot while the command defines the
actions. There is only one method to override in a subsystem: periodic().
Periodic is run every 20 milliseconds for as long as a subsystem exists (which is
always because java doesn’t have manual memory management).

11

6 Autonomous

6.1 Intro

The first 15 seconds of the game are the autonomous period in which the robot
can attempt to score points without the driver, operator, or human player’s
help. Points scored in autonomous are worth considerably more than during the
teleoperated portion so it is very important to have a functional and advanced
autonomous.

All of our autonomous commands are based off of sequential command
groups. Sequential command groups are a way provided by WPILib to run
multiple commands one after the other. A common method is to ”race” a com-
mand against a new WaitCommand(time) for a command that should end after
a set amount of time.

12

